
PHYSICAL REVIEW E FEBRUARY 1997VOLUME 55, NUMBER 2
Wave field determination using tomography of the ambiguity function

Jinhong Tu* and Shinichi Tamura*
Department of Informatics and Mathematical Science, Osaka University, Osaka, Japan

~Received 10 September 1996!

Ambiguity function ~AF! theory is proposed to reconstruct a complex wave field using tomography by
measurements of intensity in a refractive optical system. By performing one-dimensional~1D! inverse Fourier
transforms of intensities with some adjustment in various longitudinal optical system parameters, the corre-
sponding AF values along the lines at different angles in the AF phase space are obtained; therefore, the mutual
intensity function is reconstructed by performing a 1D Fourier transform of the reconstructed AF values. The
reconstruction process in some cases is considered to be simpler than the equivalent theory using Wigner
distribution function.@S1063-651X~97!08802-8#

PACS number~s!: 03.40.Kf, 03.65.Db, 42.30.Wb, 42.50.Ar
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The determination of a complex wave field with a pa
tially coherent or fully coherent state by measurements
intensity only is currently a subject of considerable intere
The wave field may represent either a scalar electromagn
field @1–5# or the quantum mechanical wave function of
matter wave@6–10#, since there exists a mathematica
analogous description between them@3#. For a scalar electro
magnetic quasimonochromatic field, the mutual intens
G(r,r 8), the second-order statistics of the wave field deno
by the complex amplitudeC(r ), can be written as

G~r,r 8!5^C~r !C* ~r 8!&, ~1!

where the brackets indicate an ensemble average over th
of realizations of the functionC(r ). In the case of a quantum
mechanical wave functionC(r ) , the second-order statistic
of the wave functionG(r,r 8), also defined by Eq.~1!, is the
density matrix. The second-order statistics functionG(r,r 8)
provides important characterization of the wave field in b
cases. It is well known that an equivalent representation
this second-order statistics function in both cases is
Wigner distribution function~WDF! which is defined in
phase space@1,3–6,11#.

Since Smitheyet al. @6# first succeeded in determining th
density matrix from the reconstructed WDF using pha
space tomography, much progress in a quantum mecha
context has been made@10#. At the same time, a metho
using phase-space tomography from intensity measurem
in a refractive optical system was presented, owing to
analogy between quantum and classical waves, for rec
structing the full WDF@3,4#. The method is based on a ro
tation of the WDF in phase space and determination o
projected function for a sufficient set of values of the rotat
angle. By means of fractional-order Fourier transform the
@3# or the generalized Fresnel transform@4# theory the pro-
jected WDF of different rotation angles is related to the
tensity for the adjustment of different longitudinal optic
system parameters. As a result, the WDF is normally rec
structed by using the filtered back-projection algorithm
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the inverse Radon transform@12#. The method can be ap
plied in the cases of fully or partially coherent resources.
advantage of the method is that the data analysis require
deconvolution and is noniterative. Another advantage is t
the refractive optics method does not use diffractive elem
so that the field power is less lost and the reconstructed w
field maintains rather higher-order spatial frequency. T
method is experimentally applied to determination of t
spatially varying amplitude and phase of a quasimonoch
matic optical field@5# and can also find its application i
atom optics@9#.

It is also known that the WDF is not confined to be
positive value and it cannot be interpreted as intensity
probability distribution, therefore the WDF itself cannot b
measured directly, only its marginal~projected! functions are
experimentally accessible. Projection of the WDF at ar
trary angles yields the Radon transform of the WDF. Hen
the WDF can be obtained by the inverse Radon transform
its marginal~projected! function. Although the filtered back
projection algorithm for the inverse Radon transform p
vides high-quality reconstructed data@12,13# and is the most
popular, a considerable amount of computation time is
quired primarily due to the back-projection operation. Fu
thermore, usually an additional one-dimensional~1D! Fou-
rier transform must be performed on the reconstructed
WDF to obtain mutual intensity function~or the density ma-
trix!, especially in the application to optical phase retriev
@5#. Therefore it is necessary to develop a new algorit
where the detour via the WDF is avoided.

In this paper we propose a theory of another well-kno
phase-space function, namely, ambiguity function~AF! @14–
16#, to reconstruct an optical complex wave field by me
surements of intensity using the first-order optical system
suggested in Refs.@3,4#. As is known, AF provides a simple
approach for treatment of a partially coherent system@16#,
which was from the uncertain principle of distance and sp
of the object in the radar measurement and had been ge
alized to be employed in the Fourier optics. AF also can
be measured directly, but the AF at a special value is rela
to the intensity through an inverse Fourier transformati
With the full knowledge of the AF in the AF phase spa
using tomography, the mutual intensity can be recovered
cording to the definition of AF.
1946 © 1997 The American Physical Society
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55 1947WAVE FIELD DETERMINATION USING TOMOGRAPHY . . .
For simplicity we only take the 1D case into conside
ation. We believe that the 2D case can easily be extende
the same manner as proposed in Refs.@3,4#. Also we omit
some unimportant constants before the integrals in the
lowing deduction which do not affect the result. Therefo
1D mutual intensity can be expressed in terms of the ce
and difference coordinatesx andDx, respectively,J(x,Dx)
as

J~x,Dx!5G~x1 ,x2!, ~2!

where

x5~x11x2!/2, ~3!

and

Dx5x12x2 . ~4!

By definition AF is expressed in the form of Fourier tran
formation of a mutual intensityJ(x,Dx) by the notation

A~Dn,Dx!5E J~x,Dx!exp~2 i2pDnx!dx, ~5!

whereDn is the difference of spatial frequencyn. In the
above and following deductions the integral is from2` to
` without declaration.

Since the mutual intensityJ(x,Dx) can be expressed by
WDF through a Fourier transformation as

J~x,Dx!5E W~x,n!exp~ i2pDxn!dnx. ~6!

By substituting Eq.~6! into Eq. ~5!, the relation between the
AF and the WDF can be expressed by

A~Dn,Dx!5E E W~x,n!exp@ i2p~Dxn2xDn!#dxdn.

~7!

Like WDF, in the Fresnel approximation, the propagation
AF through a distance or a transparent inhomogeneous
dium, such as a thin lens or a quadratic graded index~GRIN!
fiber, can be described by a certain transport matrixM (z) as
the so-calledABCD matrix,

M ~z!5FA B
C DG . ~8!

The WDF and the AF at distancez are related to the WDF
and the AF atz50 by

W~x,n,z!5W~Ax1Bn,Cx1Dn,0!, ~9!

and

A~Dn,Dx,z!5A~DDn1CDx,BDn1ADx,0!. ~10!

In other words, in a phase space such as WDF or AF
propagation through the medium that can be described
ABCD matrixM (z) does not change the values of WDF
AF, only the coordinates (x,n) or (Dn,Dx) are modified by
affine transformations as expressed in relation~11! or ~12!,
in
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FA B
C DGF x

n
G5F x8

n8
G , ~11!

FA B
C DGF Dx

Dn
G5F Dx8

Dn8
G . ~12!

Inversely, we rewrite Eq.~10! through replacing the param
eterDn,Dx by Dn8,Dx8, respectively, according to Eq.~12!,
interchanging the position of two sides of Eq.~10!, and then
dropping the prime from parametersDn8 and Dx8 for the
sake of convenience, therefore the AF at distancez50 is
related to the AF atz by

A~Dn,Dx,0!5A~dDn1cDx,bDn1aDx,z!, ~13!

where a, b, c, and d are the components of the invers
matrix of theABCD matrix. Since theABCD matrix has the
following property as

AD2BC51, ~14!

it is easy to show that

ad2bc51 ~15!

and

Fa b

c dG5F D 2B
2C A G . ~16!

As the mutual intensity atz can be transformed into intensit
at z as

I ~x,z!5J~x,Dx50,z!, ~17!

the light intensity distribution function can be obtaine
through a Fourier transform of AFA(Dn,Dx50,z) at z by

I ~x,z!5E A~Dn,Dx50,z!exp~ i2pDnx!dDn. ~18!

Conversely,A(Dn,0,z) can also be obtained through an i
verse Fourier transform ofI (x,z) as

A~Dn,0,z!5E I ~x,z!exp~2 i2pDnx!x. ~19!

If we let

Dx52bDn/a, ~20!

then put it in Eq.~13! and use Eq.~15! to obtain

A~Dn,2bDn/a,0!5A~Dn/a,0,z!, ~21!

we can establish a relation between the intensity atz and the
AF at z50 from Eq. ~19! with the condition of Eq.~20!,
which yields

A~Dn,2bDn/a,0!5E I ~x,z!exp~2 i2pDnx/a!dx,

~22!
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1948 55JINHONG TU AND SINICHI TAMURA
where I (x,z) can also be regarded as a function of para
etersa andb.

According to Eq.~2!, mutual intensityJ(x,Dx) at z50
can be seen as a Fourier transform ofA(Dn,Dx,0) as

J~x,Dx!5E A~Dn,Dx,0!exp~ i2pDnx!dDn. ~23!

Therefore Eqs.~20!–~23! yield another simple way of uniqu
determination of a complex wave field using tomograp
through measurements of intensity only. Let us consider
phase-space (Dn,Dx) plane, and let2b/a have any fixed
value. From supposed knowledge ofI (x,z) we pass to
A(Dn,Dx50,z) by an inverse Fourier transformation@see
Eq. ~19!#. This in turn yields the values ofA(Dn,Dx,z50)
along the line given by Eq.~20! through the origin and at an
angle with theDn axis u, i.e.,

tanu52b/a5B/D. ~24!

By varyingB and/orD to let u be @0,p) such a line sweeps
the (Dn,Dx) plane by rotating around the origin, therefo
fills up phase space of AF. Finally, by Fourier transformat
of A(Dn,Dx,z50) @see Eq.~23!# the mutual intensity can be
determined. This method can be regarded as a direct Fo
reconstruction technique. As is pointed out by Refs.@12,13#,
the direct Fourier reconstruction technique requires a fast
accurate polar to Cartesian coordinate interpolation if eq
angle sampling is adopted. The quality of the reconstruc
data is often dependent on the accuracy of the interpolat
Since the density of the radial points becomes sparser as
gets farther away from the center, the interpolation error
comes larger. This will result in the error in the calculati
of the high-frequency components. However, unlike
x-ray computer tomography~CT!, the method proposed in
this paper is not necessary to require equiangle sampling
sampling interval can be controlled by adjustment of opti
longitude system parameters. Data acquisition schemes
lead to 1D interpolation are possible@13#. Similar to NMR
reconstruction, if equisampling in the Cartesian domain
applied, the calculation is simplified at the cost of a lar
amount of data acquisition and the higher spatial freque
components will be retained.

Now let us consider two special systems which can
described by theABCD matrix. First, in a free space propa
gation case, theABCD matrix is given by

M ~z!5F1 2lz

0 1 G , ~25!

wherel is the wavelength of the light. To letu be @0,p)
requiresz to span the whole axis. Thus the method using t
system to recover a complex wave field seems to be imp
tical. The result dealing with a free space propagation
been discussed in Refs.@1,2#.

Second, in the case of a refractive lens system@3,4#, the
ABCD matrix ~the component may be different with respe
to different definitions in the literature! is given by

M ~z!5F12Z2 / f lZ2~12Z1 / f !1lZ1

1/l f 12Z1 / f
G , ~26!
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where f is the focal length of the lens,Z1 and Z2 are the
distances to the lens from the input plane and output pla
therefore we obtain the scaling factor

$~12Z1 / f !
21@lZ2~12Z1 / f !1lZ1#

2%1/2 ~27!

and the angle

u5arctan@lZ21lZ1 /~12Z1 / f !#, ~28!

which is proved below to be equal to the rotation angle of
WDF phase space. By suitable adjustment of the parame
f , Z1, and Z2, the AF values in the whole space can
obtained. It is worth mentioning that the equisampling in t
AF Cartesian domain can be realized iff is easily controlled
at a very small interval andZ1 and Z2 are managed to be
several fixed values.

To show the validity of the theory proposed in this pap
we prove that the method is equivalent to the WDF meth
proposed in Refs.@3,4# when a first-order optical system
such as free space, lens, GRIN media, or combination
them is adopted. It is worth noting that the relation betwe
fractional Fourier transform and AF is discussed in Ref.@17#.
Now we assume that an anglea defined in WDF space ha
the same value asu defined in AF space@see Eq.~24!#, then

cosa5a/Aa21b2, ~29!

and letting

x5XAa21b2, ~30!

the right side of Eq.~22! can be written as

E I ~x,z!exp~2 i2pDnx/a!dx

5Aa21b2E I ~X,z!exp~2 i2pDnX/cosa!dX. ~31!

At the same time, using the relation between AF and W
described by Eq.~7!, the left side of Eq.~22! can be deduced
as

A~Dn,2bDn/a,0!5E E W~X,K,0!

3exp~2 i2pDnX/cosa!dKdX, ~32!

where

F cosa sina

2sina cosaGF x
n
G5FXKG . ~33!

From Eqs.~31! and~32! therefore, we obtain a relation in
the form of Radon transformation as

Aa21b2I ~X,z!5E W~X,K,0!dK. ~34!

Equations~9!, ~33!, and~34! are supposed to be the bas
relations of the WDF method@3,4#. The relations show tha
the light intensityI (X,z) at planez5const can be considere
as the projection of the functionW(X,K,0) through particu-
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55 1949WAVE FIELD DETERMINATION USING TOMOGRAPHY . . .
lar orientations in the (X,K) plane, given from the linea
transform@see Eq.~9!#. Those projections are scaled by fa
tor Aa21b2 determined from the transfer matrix of the m
dium. By moving to a differentz planeW(X,K,0) becomes
rotated by a certain anglea with an equal value tou in AF
space and so the measured intensity corresponds to a su
rotated projection~apart from scaling!. Hence the WDF is
reconstructed by using the filtered back-projection algorit
for the inverse Radon transform with a sufficient number
projections.

In conclusion, in this paper we propose the AF theory
reconstruct a complex wave field using tomography by m
surements of intensity in a refractive optical system. We a
prove that the AF theory is equivalent to the WDF theo
proposed in Refs.@3,4#. The theory using WDF requires th
filtered back-projection algorithm for the inverse Rad
transform while the AF theory only resorts to Fourier tran
formation and may be accomplished by a fast digital al
rithm. It is found that the theory proposed in this paper
something like the Fourier reconstruction algorithm adop
in x-ray computer tomography and in nuclear magnetic re
nance@13#. In most cases, the representation of the pha
space function, such as WDF or AF, only plays an interm
diate role, and the mutual intensity is often required, hen
unlike the normal Fourier reconstruction algorithm in proje
. A
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tion reconstruction applied to a system such as x-ray CT
which the steps of a 1D Fourier transformation and a
inverse Fourier transformation are adopted to reconstruct
age, the AF theory allows the reconstruction of the mut
intensity function only through the steps of a 1D inver
Fourier transformation of intensities and then a 1D Four
transformation of the reconstructed AF. It may also be fou
that the AF plays an analogous role to the expectation va
of the displacement operator in a quantum mechanical c
text for determining the density matrix@7#. As is known, the
relations among the rotation angle and system parameter
not linear, therefore in the experiment, the WDF meth
using a filtered back-projection algorithm with equiang
sampling for the inverse Radon transform seems to enco
ter the same difficulty as the AF method without equian
sampling. Nevertheless, in the application of atom optics,
variation of system parameters can be made by varying fo
length ~by modulating the laser power, for example! @9#
hence the measured data can probably be manipulated@13#
so as to realize 1D interpolation or even by equisampling
Cartesian domain without additional interpolation. Thus t
reconstruction process can be simplified. The theory p
posed in this paper also provides another perspective vie
complementarily understand the physics of complex wa
reconstruction by intensity measurements.
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