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Wave field determination using tomography of the ambiguity function
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Ambiguity function (AF) theory is proposed to reconstruct a complex wave field using tomography by
measurements of intensity in a refractive optical system. By performing one-dimen&itnahverse Fourier
transforms of intensities with some adjustment in various longitudinal optical system parameters, the corre-
sponding AF values along the lines at different angles in the AF phase space are obtained; therefore, the mutual
intensity function is reconstructed by performing a 1D Fourier transform of the reconstructed AF values. The
reconstruction process in some cases is considered to be simpler than the equivalent theory using Wigner
distribution function[S1063-651X97)08802-§

PACS numbe(s): 03.40.Kf, 03.65.Db, 42.30.Wb, 42.50.Ar

The determination of a complex wave field with a par-the inverse Radon transforfi2]. The method can be ap-
tially coherent or fully coherent state by measurements oplied in the cases of fully or partially coherent resources. An
intensity only is currently a subject of considerable interestadvantage of the method is that the data analysis requires no
The wave field may represent either a scalar electromagnetifeconvolution and is noniterative. Another advantage is that
field [1-5] or the quantum mechanical wave function of athe refractive optics method does not use diffractive element
matter wave[6-10|, since there exists a mathematically so that the field power is less lost and the reconstructed wave
analogous description between thEsih For a scalar electro- field maintains rather higher-order spatial frequency. The
magnetic quasimonochromatic field, the mutual intensitymethod is experimentally applied to determination of the
F(I’,r ,), the second-order statistics of the wave field denoteq;patia”y Varying amp"tude and phase of a quasimonochro-

by the complex amplitudd (r), can be written as matic optical field[5] and can also find its application in
atom opticq9].
L(rr)=(V(r)v*(r')), 1) It is also known that the WDF is not confined to be a

positive value and it cannot be interpreted as intensity or
where the brackets indicate an ensemble average over the $gbbability distribution, therefore the WDF itself cannot be
of realizations of the functio® (r). In the case of a quantum measured directly, only its margingirojected functions are
mechanical wave functioW (r) , the second-order statistics experimentally accessible. Projection of the WDF at arbi-
of the wave functior’(r,r '), also defined by Eq), is the  trary angles yields the Radon transform of the WDF. Hence
density matrix. The second-order statistics functitm,r’)  the WDF can be obtained by the inverse Radon transform of
provides important characterization of the wave field in bothits marginal(projected function. Although the filtered back-
cases. It is well known that an equivalent representation oprojection algorithm for the inverse Radon transform pro-
this second-order statistics function in both cases is thgides high-quality reconstructed ddt&2,13 and is the most
Wigner distribution function(WDF) which is defined in  popular, a considerable amount of computation time is re-
phase spacgl,3-6,11. quired primarily due to the back-projection operation. Fur-
Since Smitheyet al.[6] first succeeded in determining the thermore, usually an additional one-dimensioffdD) Fou-
density matrix from the reconstructed WDF using phaserier transform must be performed on the reconstructed 2D
space tomography, much progress in a quantum mechanic@/DF to obtain mutual intensity functiofor the density ma-
context has been madd0]. At the same time, a method trix), especially in the application to optical phase retrieval
using phase-space tomography from intensity measuremeris]. Therefore it is necessary to develop a new algorithm
in a refractive optical system was presented, owing to th&here the detour via the WDF is avoided.
analogy between quantum and classical waves, for recon- In this paper we propose a theory of another well-known
structing the full WDF[3,4]. The method is based on a ro- phase-space function, namely, ambiguity functiaf) [14—
tation of the WDF in phase space and determination of a6], to reconstruct an optical complex wave field by mea-
projected function for a sufficient set of values of the rotationsurements of intensity using the first-order optical system as
angle. By means of fractional-order Fourier transform theorysuggested in Ref§3,4]. As is known, AF provides a simple
[3] or the generalized Fresnel transfof#i theory the pro- approach for treatment of a partially coherent sysfd®i,
jected WDF of different rotation angles is related to the in-which was from the uncertain principle of distance and speed
tensity for the adjustment of different longitudinal optical of the object in the radar measurement and had been gener-
system parameters. As a result, the WDF is normally reconalized to be employed in the Fourier optics. AF also cannot
structed by using the filtered back-projection algorithm forbe measured directly, but the AF at a special value is related
to the intensity through an inverse Fourier transformation.
With the full knowledge of the AF in the AF phase space
*Also at Division of Functional Diagnostic Imaging, Medical using tomography, the mutual intensity can be recovered ac-
School, Osaka University, Osaka, Japan. cording to the definition of AF.
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For simplicity we only take the 1D case into consider- [A B
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ation. We believe that the 2D case can easily be extended in c D
the same manner as proposed in RE®s4]. Also we omit
some unimportant constants before the integrals in the fol- {
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lowing deduction which do not affect the result. Therefore
1D mutual intensity can be expressed in terms of the center

and difference coordinatesand Ax, respectivelyJ(x,AX) _ _
as Inversely, we rewrite Eq(10) through replacing the param-

eterAv,Ax by Av’,Ax’, respectively, according to E¢L2),
J(X,AX)=T"(Xq1,X3), (2 interchanging the position of two sides of E§0), and then
dropping the prime from parametefsy’ and Ax’ for the
where sake of convenience, therefore the AF at distaned is
X= (X1 +X5)/2, 3) related to the AF az by

. (12

and A(Av,Ax,00=A(dAv+cAx,bAv+aAx,z), (13

4) where a, b, ¢, andd are the components of the inverse
matrix of the ABCD matrix. Since thedBCD matrix has the

By definition AF is expressed in the form of Fourier trans- following property as
formation of a mutual intensity(x,Ax) by the notation

AX=X1—X5.

AD—-BC=1, (14

A(A v,Ax)zJ’ J(x,Ax)exp( —i27Avx)dX, (5) itis easy to show that

where Av is the difference of spatial frequenay. In the ad—bc=1 (15
above and following deductions the integral is fromw to 44
o without declaration.
Since the mutual intensity(x,Ax) can be expressed by a a b D -B
WDF through a Fourier transformation as = . (16
c d |[-C A
J(X,AX) = f W(X,v)expi2mAxv)dvX. (6)  Asthe mutual intensity a can be transformed into intensity
atz as
By substituting Eq(6) into Eq. (5), the relation between the _ B
AF and the WDF can be expressed by 1(x,2)=J(x,Ax=02), (17
the light intensity distribution function can be obtained
A(A v,Ax):f f W(X,v)exdi2m(Axv—xAv)]dxdy. through a Fourier transform of AR(Av,Ax=0,2) atz by

@)

Like WDF, in the Fresnel approximation, the propagation of
AF through a distance or a transparent inhomogeneous me-
dium, such as a thin lens or a quadratic graded in@xIN) ~ ConverselyA(A»,0,z) can also be obtained through an in-
fiber, can be described by a certain transport matt{z) as  verse Fourier transform df(x,z) as

the so-called4BCD matrix,

I(x,z)=fA(Av,Ax=O,z)exp(iZwAvx)dAv. (18

A(Av,O,z)zf I(x,z)exp(—i27AvXx)X. (19

M(z) A B 8
zZ)= .
¢ D If we let
The WDF and the AF at distanceare related to the WDF
and the AF az=0 by Ax=—DbAv/a, (20
W(x, v,2) =W(Ax+ Bv,Cx+ Dv,0) (9) then put it in Eq.(13) and use Eq(15) to obtain
and A(Av,—bAv/a,0)=A(Av/a,0,z), (21

A(Av,Ax,z)=A(DAv+CAX,BAv+ AAx,0). (100 We can establish a relation between the intensity atd the
AF at z=0 from Eq. (19) with the condition of Eq.(20),
In other words, in a phase space such as WDF or AF thevhich yields
propagation through the medium that can be described by
ABCD matrix M(z) does not change the values of WDF or .
AF, only the coordinatesx(») or (Av,Ax) are modified by A(AV'_bAV/a'O):f |(x,z)exp( —i2mAvxia)dx,
affine transformations as expressed in relatibh or (12), (22
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wherel(x,z) can also be regarded as a function of param-wheref is the focal length of the lens; and Z, are the
etersa andb. distances to the lens from the input plane and output plane,
According to Eq.(2), mutual intensityJ(x,Ax) at z=0  therefore we obtain the scaling factor

can be seen as a Fourier transformAgiA v,Ax,0) as
mAGA v ) {(1=2Z,1%)2+[NZy(1—Z, /f)+NZ,]%} 22 27)

J(X,Ax)zf A(Av,Ax,0)expi27mAvx)dAv. (23 and the angle

Therefore Eqs(20)—(23) yield another simple way of unique f=arctainZo+ 12, /(1= 2, /D)1, 28
determination of a complex wave field using tomographywhich is proved below to be equal to the rotation angle of the
through measurements of intensity only. Let us consider thgypg phase space. By suitable adjustment of the parameters
phase-spaceAr,Ax) plane, and let-b/a have any fixed f 7z, andZz,, the AF values in the whole space can be
value. From supposed knowledge bfx,z) we pass to optained. It is worth mentioning that the equisampling in the
A(Av,Ax=02) by an inverse Fourier transformatidsee  AF Cartesian domain can be realized ifs easily controlled

Eqg. (19)]. This in turn yields the values dk(Av,Ax,z=0)  at a very small interval an@, andZ, are managed to be
along the line given by Eq20) through the origin and at an several fixed values.

angle with theA v axis 6, i.e., To show the validity of the theory proposed in this paper
we prove that the method is equivalent to the WDF method
tang=—b/a=B/D. (24 proposed in Refs[3,4] when a first-order optical system

. d/ | b hali such as free space, lens, GRIN media, or combinations of
By varying B and/orD to let 6 be[0,m) such a line sweeps o is adopted. It is worth noting that the relation between

the (A»,Ax) plane by rotating around the origin, therefore g ional Fourier transform and AF is discussed in RET).
fills up phase space of AF. Finally, by Fourier transformationNOW we assume that an angedefined in WDF space has

of A(Av,Ax,z=0) [see Eq(23)] the mutual intensity can be lue a8 defined in AE Eq(24)] th
determined. This method can be regarded as a direct Fouriere same value efinedn spacgsee Eq(24)], then

reconstruction technique. As is pointed out by Rgf2,13, cosy=a/\a?+ b2, (29)
the direct Fourier reconstruction technique requires a fast and

accurate polar to Cartesian coordinate interpolation if equiand letting

angle sampling is adopted. The quality of the reconstructed

data is often dependent on the accuracy of the interpolation. x=Xya’+b?, (30)
Since the density of the radial points becomes sparser as one ] )

gets farther away from the center, the interpolation error bethe right side of Eq(22) can be written as

comes larger. This will result in the error in the calculation

of the high-frequency components. However, unlike the | |(x 7z)exp —i27Awvx/a)dx

x-ray computer tomographyCT), the method proposed in

this paper is not necessary to require equiangle sampling; the

sampling interval can be controlled by adjustment of optical = +/a%+ b2J [(X,z)exp(—i27mAvX/cosx)dX. (3D
longitude system parameters. Data acquisition schemes that

lead to 1D interpolation are possit|23]. Similar to NMR At the same time, using the relation between AF and WDF

reconstruction, if equisampling in the Cartesian domain iSjescriped by Eq(7), the left side of Eq(22) can be deduced
applied, the calculation is simplified at the cost of a large,q

amount of data acquisition and the higher spatial frequency
components will be retained.

Now let us consider two special systems which can beA(Av,—bA V/a,0)=f fW(X,K.O)
described by thed 3CD matrix. First, in a free space propa-

gation case, thelBCD matrix is given by Xexp(—i2mAvX/cos)dKdX, (32
1 -2z where
M(z)= , (25)
0 1 cosx  Sina || X X
. = ) (33
where \ is the wavelength of the light. To led be [0,7) —Siha  COosx|| v K

requiresz to span the whole axis. Thus the method using this
system to recover a complex wave field seems to be impraqi-h
tical. The result dealing with a free space propagation has
been discussed in Refl,2].

From Eqs.(31) and(32) therefore, we obtain a relation in
e form of Radon transformation as

Second, in the case of a refractive lens sysf&m], the Val+ b2I(X,z)=f W(X,K,0)dK. (34)
ABCD matrix (the component may be different with respect
to different definitions in the literatuyés given by Equations(9), (33), and(34) are supposed to be the basic

relations of the WDF methof3,4]. The relations show that
(26) the light intensityl (X,z) at planez=const can be considered
as the projection of the functiow/(X,K,0) through particu-

1-Z,/f NZy(1—Z1/f)+\Z4

M@= 1 1-7,/f !
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lar orientations in the X,K) plane, given from the linear tion reconstruction applied to a system such as x-ray CT in
transform[see Eq(9)]. Those projections are scaled by fac- which the steps of a 1D Fourier transformation and a 2D
tor yaZ+b? determined from the transfer matrix of the me- inverse Fourier transformation are adopted to reconstruct im-
dium. By moving to a differenz planeW(X,K,0) becomes age, the AF theory allows the reconstruction of the mutual
rotated by a certain angle with an equal value t@ in AF intensity function only through the steps of a 1D inverse
space and so the measured intensity corresponds to a suitalbipurier transformation of intensities and then a 1D Fourier
rotated projection(apart from scaling Hence the WDF is transformation of the reconstructed AF. It may also be found
reconstructed by using the filtered back-projection algorithnthat the AF plays an analogous role to the expectation value
for the inverse Radon transform with a sufficient number ofof the displacement operator in a quantum mechanical con-
projections. text for determining the density matriX]. As is known, the

In conclusion, in this paper we propose the AF theory torelations among the rotation angle and system parameters are
reconstruct a complex wave field using tomography by meanot linear, therefore in the experiment, the WDF method
surements of intensity in a refractive optical system. We alsaising a filtered back-projection algorithm with equiangle
prove that the AF theory is equivalent to the WDF theorysampling for the inverse Radon transform seems to encoun-
proposed in Refd.3,4]. The theory using WDF requires the ter the same difficulty as the AF method without equiangle
filtered back-projection algorithm for the inverse Radonsampling. Nevertheless, in the application of atom optics, the
transform while the AF theory only resorts to Fourier trans-variation of system parameters can be made by varying focal
formation and may be accomplished by a fast digital algodength (by modulating the laser power, for example]
rithm. It is found that the theory proposed in this paper ishence the measured data can probably be manipula&d
something like the Fourier reconstruction algorithm adoptedso as to realize 1D interpolation or even by equisampling in
in x-ray computer tomography and in nuclear magnetic reso€artesian domain without additional interpolation. Thus the
nance[13]. In most cases, the representation of the phasereconstruction process can be simplified. The theory pro-
space function, such as WDF or AF, only plays an intermeposed in this paper also provides another perspective view to
diate role, and the mutual intensity is often required, hencegomplementarily understand the physics of complex wave
unlike the normal Fourier reconstruction algorithm in projec-reconstruction by intensity measurements.
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